
2.1.1 Modbus Bridge 

2.1.1.1 Explanation Configuration 

Baud rate: The transmission speed of the bus data. Usually to be found in the manual 
of the terminal device. There can only be one baud rate for each RS-
Bridge. 

Databits: This defines how many relevant bits a character has. It can also be taken 
from the instructions of the terminal device. 

Stopbits: Marks the end of the character. Can also be found in the manual of the 
terminal device. 

Parity: In message transmission, a simple method of error detection. To be found 
in the manual of the terminal device. 

Stopbyte: The character that marks the end of a message. Specified as hexadecimal 
character of the ASCII character (see ASCII table). 

Minimum Time 
between 
messages: 

If no “Stopbyte“ is given, a minimum time must elapse between messages 
in order to recognize the end of a message. Here e.g. 100ms are 
sufficient. 

Calculation example: 

9600 Baud = 9600 character per second. 

1 character is transmitted in approx. 1/9600 s. 

It must take two and a half times the time for a character to be sent before the next message 
can be sent. 

1/9600 = 0,1041 ms * 2,5   0,25 ms would theoretically be sufficient. 

2.1.1.2 Create new device 

Name: The name of the device, for example, air conditioner. 

Description: Description of the device in the device view. 

Fixed device address: Modbus RTU requires that the device address is appended to the 
beginning of each message. If you select the address, every message will automatically 
insert the address in the first place of the message. 

If the checkmark is not set, the address, if available, must be set manually for each message. 

CRC-TYPE: Another error detection method assumed by the Modbus protocol. Two bytes 
are appended to the end of each message. The end devices compare the CRC bytes to 
detect whether an error occurred during transmission. Disable if end devices do not have 
CRC control. Missing CRC may cause ignoring all incoming messages at the end device. 



2.1.1.3 Create commands 
Name: Name of the command, e.g. On/Off. 

Description: Description of the command. 

Digital: Selection option whether the generated data point is digital or analog. 

COMEXIO Input: Here it is defined whether it is an output or an input. 

 Output: COMEXIO sends a command to the end device (e.g. switch-on command or 
request for a status). 

 Input: COMEXIO receives response from a terminal device (e.g., status feedback). 

Response length (optional): Additional security to be able to assign incoming messages in 
advance (leave default=0 to ignore the function). 

Answer pattern (optional): If the response length matches with the sent message, it can be 
checked in the response pattern if this message matches with the command. 

The response pattern is a LUA pattern. 

See Example 2: Command 2: Interpret. 

Assignment: A clear assignment of requirement to interpreter and conversely is mandatory. 

Function code: A selection of predefined Modbus function codes: 

 None: The command must be written by yourself. 

 Read Holding: Standard read command for holding registers. 

 Read Input: Read command for input register. 

 Write Coil: It is written in a coil. Can only be On (0xFF00) or Off (0x0000). Is used if 
you can see from the instruction that it is to be written into the coil. 

 Write Register: Default write command for Holding Register.  

 Write multiple: Write command for multiple holding registers. The terminal device 
must support the write command for multiple registers. 

Register address: The respective register which is read or described. Refer to the manual 
of the terminal device. 

Number of registers: Relevant specification for function code “Read holding“, “Read input“ 
and “Write multiple“. Specifies how many registers are read or written from the “Register 
address“. 

Data: Only relevant for write commands. You can either write a fixed value into the register 
(fixed value) or pass a value via the COMEXIO Logic, which is then written into the register 
(input). 

The fixed value can be entered in HEX in the line below. 

Interpreter code: The resulting code. Must start with “function rs_interpreter (v)“ and end 
with “end“. 

 

ATTENTION: Manual code changes are discarded without comment when the selection fields 
in the command mask are changed. 

 



2.1.1.3.1 Example 
This is about a Modbus RTU (slave) interface and it is connected to a RS485 bus line. 8N2 

(8N1 compatible) communication (8 data bits, no parity and 2 stop bits) is carried out with 

several available baud rates: 2400 Bd, 9600 Bd (default), 19200 Bd and 57600 Bd. 

 

Screenshot from the Modbus Bridge (configuration) 

 

Screenshot from the Modbus Bridge (create device) 

Control and status register (terminal device): 

Registry address 
(protocol address) 

Read/Write Description 

0 R/W 

Room air conditioner On/Off 

 0: On 

 1: Off 

1 R/W 

Room air conditioner operating mode *1 

 0: Auto 

 1: Heating 

 2: Drying / Dehumidification 

 3: Blower 

 4: Cooling 

2 R/W 

Air conditioner blower level *1 

 0: Auto 

 1: Low 

 2: Medium 1 

 3: Medium 2 
4: High 

3 R/W 

Air conditioner Discharge direction (Vane) Position *1 

 0: Auto 

 1: Horizontal 

 2: Position 2 

 3: Postition 3 



 4: Position 4 

 5: Vertical 

 6: Swing 

4 R/W 

Air conditioner setpoint room temperature *2*3 

 16-32 °C (°C/x10 °C) 

 60-90 °F 

5 R 

Air conditioner actual value room temperature *2*3 

 10-38 °C (°C/x10 °C) 

 50-100 °F 

 

 

2.1.1.3.2 Example 1: Switching on the air 

conditioner 
The device has been successfully configured and created. The command to switch the air 
conditioner on or off looks like this: 

 

ATTENTION: The address of the terminal device was defined when it was created and will not 
change again. The address is automatically appended by COMEXIO at the first 
position of each message. For this reason, the address does not appear in the 
code. 

 



function rs_interpreter (v) 

The header of the function. 

 

valueBytes = comexio.number2byteArray(v,2) 

The number passed by the COMEXIO system is split into an array of individual bytes. The 
bracket (v,2) splits the number into at least two bytes. 

 

valueString = comexio.byteArray2string(valueBytes) 

Since an array cannot simply be output, the array must be converted to a string. 

 

return "\x06\x00\x00", valueString 

The string is output. Consists of three + the length of “valueString“ bytes (consists here of at 
least two bytes). 

1. The function code x06  Writing Register. 
2. The address of the register consisting of two bytes (bytes 2 and 3). 
3. The address of the register consisting of two bytes (bytes 2 and 3). 
4. The value which has to be written. Here at least two bytes consisting of “valueString“. 

 

end 

The end of the function. 

2.1.1.3.3 Example 2: Read out status 
To be able to read out the status of the air conditioner, two commands must be created. The 
1st command is the request for the status and the 2nd command is used to interpret the 
response. 

 

 

 

 

 

 

 

 

 

 

 



Command 1: Request 

 

return "\x03\x00\x00\x00\x01" 

The output value consisting of five bytes.  

1. The function code in this case x03  Read Holding Register. 
2. The address of the register consisting of two bytes (bytes 2 and 3). 
3. The address of the register consisting of two bytes (bytes 2 and 3). 
4. The number of registers to be read consisting of two bytes (bytes 4 and 5). 
5. The number of registers to be read consisting of two bytes (bytes 4 and 5). 

 

 

 

 

 

 



 

Command 2: Interpret 

 

Answer pattern: In the message of the terminal device the byte sequence “03 02“ must 
occur. “03“ indicates the function code of the request and “02“ the length of the sent data. 

Assignment: This command is uniquely assigned to the “Request status“ command. 

answerBytes = comexio.string2byteArray(v) 

The answer of the device is written into an array with the single byte values. 

valueBytes = comexio.tableChunk(answerBytes, 4, 5) 

The array is reduced to the relevant places. Position 4 and 5 of the array contain the return 
value of the sent message.  

return comexio.byteArray2dec(valueBytes) 

The reduced array is converted to a decimal number and output. 



2.1.1.3.4 Example 3: Send setpoint 

 

The following lines were used to set up that only values between 16 and 32 can be sent (see 
excerpt of the instructions). Values outside this range are not sent. 

if(v < 16 or v > 32) then 

    return 

end 

 

 

 

 

 



2.1.1.3.5 Example 4: Request actual value 
 

Command 1: Request actual value 

 

 

 

 

 

 

 

 

 



Command 2: Interpret actual value 

 

 


